2023 Parent Engagement Session Common Misconceptions in Primary Mathematics

1) Fractions

Primary 5
a. Common denominators - change to common denominators when the fractions refer to the same total.

Example 1 - Change to common denominators
Referring to the same total/whole
There are some cookies ir. a bag. $\frac{1}{4}$ of the cookies are chocolate chip cookies. $\frac{2}{5}$ of the cookies are almond cookies. The rest are butter cookies. What fraction of the cookies are butter cookies?

$$
\begin{aligned}
\text { Butter } & =1-\frac{1}{4}-\frac{2}{5} \\
& =\frac{7}{20} \text { (Ans) }
\end{aligned}
$$

$$
\text { Aus: } \frac{7}{20}
$$

Example 2 - Part of a part (different denominator)

- Differmit $\frac{5}{7}$ of the students in a Computer Club are boys. $\frac{1}{4}$ of the girls in the Computer Club are in Primary 6. What fraction of the students in the Computer Club are not Primary 6 girls?
girls who are not primary 6 * Please not typo.

$$
\begin{aligned}
\text { Girts out of tall } & =1-\frac{5}{7} \\
& =\frac{2}{7}
\end{aligned}
$$

$$
\begin{aligned}
\text { Girls not in } 96= & 1-\frac{1}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

Girds not in P6 in computer club out of total $=\frac{3}{4} \times \frac{21}{7}=\frac{3}{14}$ (Ans)

Ans: $\frac{3}{14}$

Primary 6

b. Remainder in the answer - dividing fractions

Example 1

A jug contains 4ℓ of water. Mr Cay uses the water to fill some identical glasses to the brim. The capacity of each glass is $\frac{5}{8} \ell$. How much water is left?

$A_{u s}: \frac{1}{4} l$

Example 2

Joyce added $\frac{4}{5} \ell$ of water to $\frac{1}{10} \ell$ of orange syrup to prepare a drink.
Then she poured $\frac{1}{8} l$ of the drink into identical glasses.
(a) What was the greatest number of glasses that contained $\frac{1}{8} \ell$ of drink?
(b) How much drink did she have left?

$$
\begin{aligned}
\text { Total } & =\frac{4}{5}+\frac{1}{10} \\
& =\frac{9}{10}
\end{aligned}
$$

(b) Kef $=\frac{1}{5} \times \frac{1}{8}$
$=\frac{1}{40}$ (Aus)
(a) No. of glares $=\frac{9}{10} \div \frac{1}{8}$

≈ 7 (Ans)

Ans: (a) 7
(b) $\frac{1}{40} l$
2) Percentage

Are the percentages referring to the same whole?
Example 1
Referring to 600
Mrs King baked 600 cookies. 60% of them were chocolate cookies and the rest were butter cookies. She sold some butter cookies and the percentage of chocolate cookies increased to 72%. How many butter cookies did she sell?

Example 2

$$
\begin{aligned}
& 72 \% \text { of newtortal } \\
& =360 \\
& 28 \% \text { of neco total } \\
& =\frac{360}{72} \times 28 \\
& =140
\end{aligned}
$$

Butter sold

$$
=240-140
$$

$$
=100 \text { (Ans) }
$$

Ans: 100

At a fruit stall, 60% of the fruits are durians. 60% of the remaining fruits are mangoes and the rest are watermelons. There are 112 watermelons. How many durians re there?

$$
\begin{aligned}
40 \% \text { of Remainder } & =\text { vateumalous } \\
& =\frac{40}{100} \times 40 \\
& =16 \% \\
16 \% \text { of total } & =112 \\
\text { Durians } & =\frac{112}{16} \times 60 \\
& =420 \text { (Ans) }
\end{aligned}
$$

3) Algebra

Algebra vs Model - Which is better?

Mrs Loke had some red, green and yellow buttons. She had 80 more green buttons than yellow buttons and 15 more red than green buttons. She used $\frac{3}{4}$ of her green buttons and $\frac{1}{2}$ of her yellow buttons to sew on some dresses. She had 290 buttons left. How many buttons did Mrs/Loke have at first?

Model 4 equal groups

$$
\begin{aligned}
& \text { Tut } 80+20+15=290 \\
& 7 u+115=290 \\
& 7 u=290-115 \\
& = \\
& \begin{aligned}
12 u & =\frac{175}{7} \times 12 \\
& =300 \\
\text { At first } & =300+80+80+15 \\
& =475 \text { (Ans) }
\end{aligned}
\end{aligned}
$$

Ans: 475

Algetra
Let x be no. of yellow $]$ Children be

$$
\begin{aligned}
& G=x+80 \\
& Y=x \\
& R=x+80+15 \\
&=x+95 \\
& \frac{G}{x+80}
\end{aligned}
$$

$$
\begin{aligned}
& x+80 \\
& \text { used } \left.=\frac{3}{4} x+\frac{3}{4} \times 80\right] \text { Outside pinning } \\
& \text { syllabus }
\end{aligned}
$$

$$
=\frac{3}{4} x+60
$$

$$
\begin{aligned}
L_{\text {ff }} & =x-\frac{3}{4} x+80-60 \\
& =\frac{1}{4} x+20
\end{aligned}
$$

$$
=\frac{1}{4} x+20
$$

$$
\frac{y}{x}
$$

$$
\underset{u s e d}{x}=\frac{1}{2} x
$$

$$
\text { Kef }=\frac{1}{2} x
$$

$$
x+95+\frac{1}{2} x+\frac{1}{4} x+20=290
$$

$$
\begin{aligned}
1 \frac{3}{4} x+115 & =290 \\
1 \frac{3}{4} x & =290-115 \\
& =175 \\
x & =175 \div 1 \frac{3}{4} \\
& =100
\end{aligned}
$$

At fort $=100+80+100+100+95$

$$
=475 \text { (Ans) }
$$

$A_{n s}: 475$

